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ABSTRACT

We explore how thermal Rossby waves propagate within the gravitationally stratified atmo-
sphere of a low-mass star with an outer convective envelope. Under the conditions of slow,
rotationally constrained dynamics, we derive a local dispersion relation for atmospheric waves
in a fully compressible stratified fluid. This dispersion relation describes the zonal and radial
propagation of acoustic waves and gravito-inertial waves. Thermal Rossby waves are just one
class of prograde-propagating gravito-inertial wave that manifests when the buoyancy frequency
is small compared to the rotation rate of the star. From this dispersion relation, we identify
the radii at which waves naturally reflect and demonstrate how thermal Rossby waves can be
trapped radially in a waveguide that permits free propagation in the longitudinal direction. We
explore this trapping further by presenting analytic solutions for thermal Rossby waves within
an isentropically stratified atmosphere that models a zone of e�cient convective heat transport.
We find that within such an atmosphere, waves of short zonal wavelength have a wave cavity
that is radially thin and confined within the outer reaches of the convection zone near the star’s
equator. The same behavior is evinced by the thermal Rossby waves that appear at convective
onset in numerical simulations of convection within rotating spheres. Finally, we suggest that
stable thermal Rossby waves could exist in the lower portion of the Sun’s convection zone, despite
that region’s unstable stratification. For long wavelengths, the Sun’s rotation rate is su�ciently
rapid to stabilize convective motions and the resulting overstable convective modes are identical
to thermal Rossby waves.

Subject headings: convection — hydrodynamics — stars: interior — stars: oscillations — stars:
rotation — Sun: interior — Sun: oscillations — Sun: rotation — waves

1. Introduction

The unambiguous detection of Rossby waves in the Sun by Löptien et al. (2018) has led to a flurry of
observational e↵orts to characterize the waves and to search for other classes of inertial oscillations (e.g.,
Liang et al. 2019; Hanasoge & Mandal 2019; Alshehhi et al. 2019; Hanson et al. 2020; Proxauf et al. 2020;
Gizon et al. 2021; Hathaway & Upton 2021; Mandal et al. 2021). As a result, there has been a resurrection of
interest in inertial waves as they might apply to the Sun and solar-like stars (e.g., Lanza et al. 2019; Damiani
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et al. 2020; Gizon et al. 2020; Cai et al. 2021; Bekki et al. 2022). In particular, Gizon et al. (2021) have raised
the intriguing possibility that inertial oscillations might be a sensitive seismic diagnostic for the properties
of the deep convection zone, such as the radial profiles of the superadiabatic gradient and the turbulent
viscosity. For a recent review of inertial oscillations in the solar context, see the review by Zaqarashvili et
al. (2021).

There is a menagerie of inertial oscillations that might exist within a star (e.g., Bryan 1889; Greenspan
1968; Rieutord 1991; Lindblom & Ipser 1999; Lockitch & Friedman 1999). But, the classical Rossby waves—
coined r modes in astrophysics (Papaloizou & Pringle 1978)—have received the bulk of the attention of the
stellar physics community (e.g., Provost et al. 1981; Saio 1982; Wol↵ & Blizard 1986; Lee & Saio 1987; Lee
et al. 1992; Saio et al. 2018; Van Reeth et al. 2018; Li et al. 2019). The r modes are primarily 2D vorticity
waves, with incompressive horizontal motions confined largely to spherical surfaces. As such motions do not
generate pressure or buoyancy fluctuations, the Coriolis force is the only active restoring force.

Classical Rossby waves conserve the radial component of their absolute vorticity. If ⌦ is the rotation
vector of the star and the flow velocity in the rotating frame of reference is u, then the relative vorticity of
the flow is ! = r⇥u and the “planetary” vorticity is 2⌦. The absolute vorticity is their sum, !a = !+2⌦,
and the conservation principle can be written,

D

Dt
(!a · r̂) =

D

Dt
(!r + 2⌦r) = 0 , (1)

where !r and ⌦r = ⌦ cos ✓ are the radial components of the relative vorticity and the rotation vector,
respectively. The angle ✓ is the colatitude and r̂ is the radial unit vector of the spherical coordinate system
whose axis is aligned with the rotation vector.

In the northern hemisphere, as a spinning parcel of fluid is pushed northward, the radial component of
the planetary vorticity 2⌦r increases and there must be a corresponding decrease in the relative vorticity
!r. A parcel pushed equatorward has the converse e↵ect; the radial component of the planetary vorticity
is reduced and the relative vorticity must increase to compensate. For the poleward pushed parcel, the
decrease in relative vorticity is consistent with adding an anticyclonic vortex to the fluid parcel and through
vortex-vortex interactions this new clockwise motion will push all nearby fluid elements. Fluid located to
the east is pushed poleward and fluid to the west is pushed equatorward. These pushed fluid elements will
conserve their own absolute vorticity and in turn push fluid elements that are further and further away.
One can see that the net result is a north-south undulation that travels to the west, or equivalently in the
retrograde direction. In the preceding discussion, we are using the words east and west in terms of the
directions on the stellar globe, not in terms of the directions on the plane of the sky (as is often done by
solar astronomers).

There is another class of Rossby wave, called the thermal Rossby wave (i.e., Roberts 1968; Busse 1970),
that operates on a similar principle of conservation of potential vorticity. The motions in a thermal Rossby
wave are also 2D, but instead of motion on spherical surfaces, the thermal Rossby wave has motions that are
perpendicular to the rotation axis. Specifically, the motion generally manifests as a belt of nearly geostrophic
Taylor columns that gird the equator and, except for where they intersect with the star’s spherical surface,
are largely invariant in the direction of the rotation vector—see the review by Busse (2002). Every other
column in the belt has right-handed spin and columns with left-handed spin are interleaved between. A full
longitudinal wavelength is hence two counter-spinning columns.

Each spinning Taylor column conserves angular momentum locally and when expressed as a potential
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vorticity, the conservation law takes on the form (Gibbons 1980; Glatzmaier & Gilman 1981; Unno et al.
1989),

D

Dt

 
!a · ⌦̂

⇢L

!
=

D

Dt

✓
!y + 2⌦

⇢L

◆
= 0 , (2)

where !y = ! · ⌦̂ is the component of the relative vorticity aligned with the rotation axis, ⇢ is the mass
density, and L is the height of the Taylor column, i.e., the length of the chord that runs along the column’s
axis from the stellar surface in the southern hemisphere to the same spherical surface in the north—see
Figure 1 of Glatzmaier & Gilman (1981).

If a spinning column near the equator is pushed towards the rotation axis, the column grows in height
(L increases) as the chord length of the column’s axis increases. In an incompressible fluid, this vortex
stretching is accompanied by a commensurate narrowing of the column to conserve mass. Subsequently, as
the column compresses laterally the column must spin faster to conserve angular momentum about its own
axis (e.g., Hide 1966; Busse 1970). In Equation (2), this conservation principle is enforced by the constancy
of the potential vorticity, (!y + 2⌦)/⇢L. As L increases, !y must also increase. The resulting induced
vorticity causes the neighboring column to the west to be pushed outward, away from the rotation axis
and the column to the east to be pushed inwards towards the rotation axis. These newly pushed columns
conserve their own potential vorticity (i.e., angular momentum) and induce spinning columns further down
the belt to also move inward and outward. The result is a prograde propagating Rossby wave where the
spinning columns dance back and forth, toward and away from the rotation axis. This type of wave has
received significant attention in the geophysics community, as thermal convection in a rotating spherical shell
of fluid appears at onset as an unstable thermal Rossby wave (e.g., Roberts 1968; Busse 1970; Dormy et al.
2004; Jones et al. 2009; Kaplan et al. 2017).

In a compressible fluid, an additional mechanism comes into play (Gibbons 1980; Glatzmaier & Gilman
1981; Ando 1989). In complement to the topological e↵ect of the changing column height as the column
moves inward or outward, gravitational stratification leads to a change in the mass density of the column as
the column is pushed into a region with di↵erent pressure. If the column is pushed closer to the rotation axis,
the increase in pressure leads to an increase in density and conservation of mass and angular momentum
dictate that the column must narrow and consequently spin faster cyclonically. This stratification e↵ect is
embodied by the factor of density that appears in the denominator of the potential vorticity in Equation (2).

The topological and stratification e↵ects act in concert to enhance spin as a column is moved inward, and
hence they both lead to prograde wave propagation. The topological e↵ect, sometimes called the topological
�-e↵ect, is the dominant e↵ect in the molten interiors of rocky planets, as the density contrast as a function
of radius is rather modest and one can safely assume that the fluid is incompressible. In stars, however, many
density scale heights fit within the stellar radius and as a result, the topological e↵ect is usually ancillary to
the stratification. For instance, Glatzmaier & Gilman (1981) argue that the stratification e↵ect dominates
if a star spans more than one density scale height (the Sun’s convection zone spans roughly eleven scale
heights).

To our knowledge, thermal Rossby waves have not yet been observed in the Sun or identified astero-
seismically in other stars. Yet, they are a conspicuous feature in laboratory experiments of convection in a
rotating fluid (e.g., Mason 1975; Busse 1982; Azouni et al. 1985; Chamberlain & Carrigan 1986; Sommeria
et al. 1991; Cordero & Busse 1992; Smith et al. 2014). In fact, thermal Rossby waves are often used as a
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proxy for understanding classical Rossby waves, by building a spinning tank of fluid with sloping upper or
lower boundaries, thus allowing one to control the sign and magnitude of the topological �-e↵ect. Further,
in numerical simulations of stellar convection in spherical geometry, nonlinear thermal Rossby waves play
a crucial role in the transport of angular momentum and heat throughout the star’s convection zone. In
particular, they are essential for generating di↵erential rotation by redistributing angular momentum. These
waves appear prominently at convective onset, when the Rayleigh number just exceeds the critical value
required for convective overturning. The first convective instability to appear is a buoyantly driven thermal
Rossby wave that manifests at low latitudes just below the outer surface. In terms of spherical harmonics,
this wave is composed of a single unstable azimuthal order m and a small range of harmonic degrees cor-
responding to equatorially trapped harmonics, ` ⇡ m. The wave is unstable, but its amplitude saturates
at a low amplitude due to nonlinear e↵ects. Figure 1 illustrates the type of thermal Rossby wave that is
seen in such simulations (i.e., Hindman et al. 2020a). Both panels show the axial component of the vorticity
(i.e., the component that is parallel to the rotation vector, !y = ! · ⌦̂). The rotation axis is aligned with
the coordinate axis, with north upwards in the image. The left-hand panel is an orthographic projection of
the axial vorticity on a spherical surface with a radius that is just below the outer surface of the simulation
domain. Red tones indicate anticyclonic vorticity and blue tones cyclonic. This particular simulation has 42
complete wavelengths that wrap around the equator (m = 42). The right-hand panel of Figure 1 portrays
axial vorticity in the equatorial plane. It is clear that each zonal wavelength consists of two counter-rotating
vortices and that the wave is trapped in the upper reaches of the model’s convection zone.

This concentration of the thermal Rossby wave’s energy density in the outer portion of the star’s
convection zone is a direct consequence of the density stratification. In an incompressible fluid, the thermal
Rossby waves that appear at convective onset are concentrated in the deepest portions of the shell. But with
even a moderate degree of stratification—one or more density scale heights across the shell, the wave’s energy
density begins to shift and cling to the outer surface (e.g., Busse et al. 2005; Jones et al. 2009; Hindman et
al. 2020a). The radial structure of a thermal Rossby wave’s eigenfunction and the way in which the waves
are reflected and trapped in a waveguide are still poorly understood when the fluid is stratified. Elucidating
why these reflections occur and where the waveguide resides will be our goal here.

In helio- and asteroseismology, when exploring the properties of the waveguides that trap p modes
and g modes, it is common practice to extract a local dispersion relation from the fluid equations and to
discern the regions of a star where a wave with a particular frequency and horizontal wavenumber is radially
propagating and where it is evanescent (e.g., Unno et al. 1989; Gough 1993; Christensen-Dalsgaard 2003).
In this way, the radial extent of the waveguide can be identified as the zone of propagation without ever
needing to completely solve for the mode eigenfunctions. We will apply this standard technique here to
define the radial boundaries of the waveguide for thermal Rossby waves and to characterize which properties
of the star (e.g., the stratification and rotation rate) determine the location of those boundaries.

A local dispersion relation for thermal Rossby waves has been derived previously by Ando (1989) and
subsequently simplified by Unno et al. (1989) for the special case of waves propagating perpendicular to the
rotation vector through an isentropic stratification. If ! is the temporal frequency of the wave (not to be
confused with the vorticity), kx is the zonal wavenumber, kz is the radial wavenumber, and H is the density
scale height, Unno et al. (1989) obtain the following relation

! =
2⌦kx

(k2x + k2z)H
. (3)

Both, Ando (1989) and Unno et al. (1989) correctly comment that the wave propagates in the prograde
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direction and, as such, Unno et al. (1989) calls the thermal Rossby wave the “low-frequency prograde wave.”
As we will see, their expression is valid only in the extreme limit that the wavelength is drastically shorter
than the local density scale height. Thus, in their derivation they have dropped a variety of terms that
depend on the star’s radial stratification. We will demonstrate that these dropped terms can cause reflection
and thus enable radial trapping of the thermal Rossby wave.

In addition to deriving a more complete local dispersion relation that self-consistently accounts for
the gravitational stratification, we will explore the nature of the resulting waveguide, or wave cavity, by
presenting analytic solutions for the eigenfunctions and eigenfrequencies that apply when the atmosphere
is isentropically stratified. Such stratification has been examined often in the past (e.g., Glatzmaier &
Gilman 1981; Papaloizou & Pringle 1981; Busse et al. 2005; Wu 2005; Busse & Simitev 2014; Ouazzani et
al. 2020) because in such an atmosphere the internal gravity waves and their coupling to the inertial waves
is suppressed. With these eigenfunctions we will demonstrate that when the thermal Rossby wave is a pure
inertial wave (instead of a mixed gravito-inertial wave), the concentration of the thermal Rossby wave’s
energy density near the upper boundary of a stellar convection zone is a natural consequence for waves with
a zonal wavelength that is much shorter than the depth of the convection zone.

In Section 2, we present the fluid equations for a completely compressible fluid and argue that the
solutions are 2D when the wave motions are su�ciently slow and the frequency is low. From these equations,
in Section 3, we derive a local dispersion relation for gravito-inertial waves that is valid for a completely
general radial stratification. In Section 4, we specialize to an isentropically stratified atmosphere and present
analytic solutions for the resulting inertial waves. Finally, in Section 5, we discuss the implications of our
results for the Sun and other low-mass stars.

2. Atmospheric Waves in a Rotating Star

Our ultimate goal is to generate a simple, easily-interpreted local dispersion relation for thermal Rossby
waves that is applicable in a gravitationally stratified atmosphere. From this dispersion relation we will
deduce where waves reflect in the atmosphere and thus map the radial extent of the waveguide or cavity in
which the thermal Rossby waves are trapped. In this section we will derive the governing wave equation
that applies in a simplified geometry.

We will be implicitly thinking about how the waves propagate and reflect within a low-mass star that
possesses an outer convection zone, but many of the ideas that we develop will apply to more massive stars
as well. In a general stratification, atmospheric waves come in many forms: acoustic waves, internal gravity
waves, surface gravity waves, inertial waves, and all of their potential hybrids. In a star, the acoustic waves,
or p modes, generally appear at high frequency and thus their behavior can often be separated from that of
the coupled, low-frequency, gravito-inertial waves. Thermal Rossby waves are but one type of the general
class of gravito-inertial waves.

2.1. 2D Rotationally Constrained Flow in a Local Cartesian Domain

In regions of a star that are stably stratified, vertical movement is strongly inhibited and motions are
often assumed to be horizontal and confined to spherical surfaces. When deriving the r modes of a star, this
assumption is called the traditional approximation of rotation. In regions with an unstable or neutrally stable
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stratification, vertical motion is no longer restricted and the traditional approximation is not appropriate
for all inertial waves. Instead, we start by assuming that the motions are rotationally constrained (i.e., slow
compared to the rotational speeds) and, hence, the Taylor-Proudman theorem applies. This theorem dictates
that slow motions are invariant in the direction of the rotation vector ⌦ and, therefore, we can treat the
problem as two-dimensional (2D). This 2D approximation is a standard one (Busse 1970, 2002; Busse et al.
2005; Busse & Simitev 2014; Glatzmaier & Gilman 1981), but of course, in a star with spherical geometry,
there are many reasons that the Taylor-Proudman theorem breaks down on global spatial scales. Even so,
the Coriolis force leads to a strong tendency towards 2D motion, and the Taylor-Proudman theorem can still
hold locally over surprisingly long length scales. In our work here, we will ignore these potential 3D e↵ects,
because the full spherical geometry begets complicated mathematics that hinders qualitative understanding.

Numerical simulations (e.g., Hindman et al. 2020a) and linear stability analyses (Soward & Jones 1983;
Yano 1992; Jones et al. 2009) demonstrate that the thermal Rossby waves that appear at convective onset
in a gravitationally stratified spherical shell have the properties that the waves propagate in the longitudinal
direction and are essentially 2D in nature. The waves appear as a parade of convective rolls that wrap around
the equator. The axis of each roll is aligned with the rotation vector and the roll is largely invariant along its
own axis except where the axis intersects with the outer spherical surface. Whenever the zonal wavelength
is much smaller than the outer radius of the convection zone, the waves are confined within a radially thin
cavity that hugs the outer surface of the convection zone near the equator. Further, since the waves are
essentially 2D in nature, the waves are equatorially as well as radially trapped. For example, the bottom of
the wave cavity at the equator can be projected along a cylindrical surface whose axis is perpendicular to the
equatorial plane. Hence, the cavity is confined in cylindrical radius instead of spherical radius and modes
with a deep cavity (at the equator) extend further north and south of the equator. Figure 1 illustrates these
properties by presenting a thermal Rossby wave as it appears in the 3D numerical simulation of Hindman
et al. (2020a). Other examples can be viewed and downloaded at Hindman et al. (2020b). The numerically
computed eigenfunctions obtained by Bekki et al. (2022) in spherical geometry also illustrate the cylindrical
nature of the lower boundary of the wave cavity.

We will exploit these properties and make a short longitudinal wavelength approximation. Thus, over
the shallow layer within which the wave resides, we can ignore the radial variation in the gravitational
acceleration. Further, we can ignore the curvature of the isopycnals. These assumptions allow us to treat the
background fluid as a plane-parallel atmosphere with constant gravity. This is similar to the approximation
that is often made for the p modes in helioseismology (e.g., Lamb 1945; Gough 1993; Hindman & Zweibel
1994); for large harmonic degrees (i.e., large horizontal wavenumbers), the acoustic waves are trapped in a
thin planar waveguide that lies just below the photosphere.

We will solve the fluid equations in a local Cartesian coordinate system whose origin is located at the
equator on the star’s outer surface. We align the unit vectors, x̂, ŷ, and ẑ, of this coordinate system such
that x̂ points in the longitudinal direction, ŷ points in the latitudinal direction (parallel to the rotation
vector, ⌦ = ⌦ŷ), and ẑ is aligned with the radial direction (or antialigned with gravity, g = �gẑ). If r,
✓, and � are the radius, colatitude, and longitude of a spherical coordinate system whose axis is aligned
with the rotation vector, the three Cartesian coordinates can be mapped onto the spherical coordinates
through x = R�, y = R (⇡/2� ✓), and z = r � R, where R is the radius of the stellar photosphere. We
will interchangeably refer to z as the radial or vertical coordinate, and x and y as horizontal coordinates.
This Cartesian coordinate system is similar to an f -plane model, except that the rotation vector points
horizontally in the latitudinal direction. In a traditional f -plane model the horizontal component of the
rotation vector is ignored and the vertical component is treated as constant. Here, we will instead ignore
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the vertical component and impose homogeneity of the latitudinal component.

2.2. Background Atmosphere for a General Stratification

As is typically done, we decompose all of the fluid variables into a steady background term and a
temporally oscillating fluctuation, where the background is denoted with a ‘0’ subscript and the Eulerian
fluctuations with ‘1’. Since the gravity in our plane-parallel atmosphere is purely vertical, all of the thermo-
dynamic variables of the background are functions of z alone. Hence, the background pressure, mass density,
and temperature are, respectively, P0(z), ⇢0(z), and T0(z). These background thermodynamic profiles obey
the hydrostatic condition and the ideal gas law,

dP0

dz
= �g⇢0 , (4)

P0 = ⇢0RgasT0 , (5)

where Rgas is the gas constant.

Since we will be considering gravito-inertial waves, the buoyancy frequency, N , will be an important
atmospheric profile. The buoyancy frequency can be expressed in terms of the density scale height, H, and
the sound speed, c,

N
2 = g

✓
1

H
�

g

c2

◆
, (6)

H
�1

⌘ �
1

⇢0

d⇢0

dz
, (7)

c
2

⌘ �RgasT0 , (8)

where � is the gas’s adiabatic exponent. Throughout Sections 2 and 3, we shall consider a general stratifica-
tion where any reasonable functional form for the atmospheric profiles will be possible. Later, in Section 4,
we will specialize to an isentropic atmosphere for which N

2 = 0.

2.3. Wave Equation for Atmospheric Waves

In our plane-parallel atmosphere, the 2D nature of the gravito-inertial waves manifests as invariance
along the y axis and a lack of motion in that same direction. Thus, the fluid velocity u is purely lateral to
the rotation vector ⌦ and depends only on time and on the longitudinal and radial coordinates, x and z,
respectively, u = u(x, z, t) x̂+w(x, z, t) ẑ. Further, if we ignore ionization and di↵usive e↵ects, the linearized
fluid equations for an ideal gas take on the following form

@u

@t
= 2u⇥⌦�

1

⇢0
rP1 + g

⇢1

⇢0
, (9)

@P1

@t
+ w

dP0

dz
= c

2

✓
@⇢1

@t
+ w

d⇢0

dz

◆
, (10)
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@⇢1

@t
= �r · (⇢0u) , (11)

where we have adopted an adiabatic energy equation (10) and a continuity equation (11) that describes a
completely compressible fluid. The quantities ⇢1 and P1 are the Eulerian fluctuations of the mass density
and gas pressure, respectively.

Since the background atmosphere is steady and longitudinally invariant, we will assume plane-wave
solutions for the longitudinal and temporal variables. Therefore, all fluid variables will have the following
form

w / e
ikxx e

�i!t
, (12)

with kx being the longitudinal wavenumber and ! the temporal frequency. When a correspondence is drawn
with spherical coordinates, the zonal wavenumber is directly proportional to the azimuthal order m = kxR

of the associated spherical harmonic. Note, the sign convention that we have adopted is such that waves
with positive wavenumbers (kx > 0) have a prograde phase speed if the frequency is positive (! > 0) and
retrograde for negative frequencies (! < 0).

Our experience with acoustic-gravity waves suggests that a clean working variable is the reduced La-
grangian pressure fluctuation, �$, which is related to the Eulerian pressure fluctuation through an additive
advective term,

�$ ⌘
P1

⇢0
�

u ·rP0

i!⇢0
=

P1

⇢0
+

gw

i!
. (13)

By utilizing the definition of the buoyancy frequency (6), hydrostatic balance of the background state (4),
and the continuity equation (11), we can rewrite the momentum and energy equations in terms of the two
velocity components, u and w, and the reduced Lagrangian pressure fluctuation, �$,

i! �$ = c
2r · u = c

2

✓
ikxu+

dw

dz

◆
, (14)

u =
�
2
!

!4 � �4


d

dz
+
!
2
kx

�2
�

1

H

�
�$ , (15)

w = �
i!

3

!4 � �4


d

dz
+
�
2
kx

!2
�

1

H

�
�$ . (16)

Equations (15) and (16) have been obtained from the two components of the momentum equation by using the
definition of the Lagrangian pressure fluctuation (13), the modified energy equation (14), and the continuity
equation (11) to eliminate the Eulerian pressure fluctuation P1, the density fluctuation ⇢1, and the vertical
derivative of the vertical velocity dw/dz. The resulting equations have then been cross multiplied and
subtracted to generate an equation that depends only on the horizontal velocity component u and another
that depends only on the vertical velocity w.

For compactness in these expressions, we have defined a frequency, �,

�
2
⌘ gkx � 2⌦! , (17)
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that generates the dispersion relation !2 = �
2 for surface gravity waves, or f modes, in our rotating star.

The existence of such a solution can be deduced from Equations (15) and (16) by seeking non-trivial solutions
for the velocity components under the condition that the motions are incompressible (�$ = 0). Due to the
orthogonality of gravity and the rotation vector at the equator, these solutions di↵er from the traditional
Poincaré waves—see Section 5.5 for details.

Equations (14), (15), and (16) can be combined to generate an ODE whose dependent variable is the
reduced Lagrangian pressure fluctuation, �$,

⇢
d
2

dz2
�

1

H

d

dz
+


!
2
� 4⌦2

c2
+

H
0

H2
� k

2
x

✓
1�

N
2

!2

◆
+

2⌦kx
!

✓
1

H
�

2N2

g

◆��
�$ = 0 . (18)

This governing equation is valid for a general stratification and for a completely compressible fluid. All of
the atmospheric profiles are general functions of height, i.e., H = H(z) and N

2 = N
2(z). For compactness

of notation, when convenient, we use a prime to indicate derivatives with respect to the vertical coordinate
z. Hence, H 0 = dH/dz is the vertical derivative of the density scale height.

3. Local Dispersion Relation for a General Stratification

The governing equation (18) can be rewritten in standard form (i.e., as a Helmholtz equation) by making
a change of variable, �$(z) = ⇢

�1/2
0  (z), that has been explicitly chosen to ensure that the resulting ODE

for  (z) lacks a first derivative term,

d
2 

dz2
+ k

2
z(z) (z) = 0 , (19)

k
2
z(z) ⌘

!
2
�
�
!
2
c + 4⌦2

�

c2
� k

2
x

✓
1�

N
2

!2

◆
+

2⌦kx
!H

. (20)

In the expression for k2z , the acoustic-cuto↵ frequency, !c, has the standard definition

!
2
c ⌘

1� 2H 0

4H2
c
2
, (21)

and H is a scale height that depends on the stratification,

1

H
⌘

1

H
�

2N2

g
. (22)

In a stellar convection zone where N
2
⇡ 0, the scale height H is nearly equal to the density scale height,

but even in a region of stable stratification, H is positive and in low-mass stars has the same magnitude
as the density scale height. Figure 2 illustrates the buoyancy frequency, the density scale height H, and
the scale height H as predicted by an evolutionary model of the Sun’s internal structure, i.e., Model S from
Christensen-Dalsgaard et al. (1996).

The quantity kz(z) is a local radial wavenumber that varies with height in the atmosphere and Equa-
tion (20) is a local dispersion relation that describes acoustic waves and gravito-inertial waves. This local
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dispersion relation reduces to the well-known expression for acoustic-gravity waves when the rotation rate
vanishes. The inclusion of the Coriolis force provides two modifications. First, there is an e↵ective correction
to the acoustic-cuto↵ frequency (i.e., !2

c ! !
2
c +4⌦2) that is exceedingly weak in most stars. Second, the last

term in Equation (20) is solely due to the Coriolis force and it is responsible for generating inertial waves.

The local dispersion relation constitutes a fourth-order polynomial equation in ! and hence for any
given value of the vertical wavenumber, kz, there are four solutions. Two of the solutions correspond to
high-frequency acoustic waves and two to low-frequency gravito-inertial waves. In the limit of an isothermal
atmosphere all of the atmospheric profiles become constants, and hence the vertical wavenumber kz is
a constant. Figure 3 provides two propagation diagrams which illustrate the frequencies for which the
solutions are radially oscillatory in an isothermal atmosphere. The two panels correspond to di↵erent values
of the ratio of the rotation rate and the buoyancy frequency. The shaded regions indicate the domains
of vertical propagation where the wavenumber kz is real valued (k2z > 0). The white, unshaded regions
correspond to evanescent waves, where the wavenumber kz is purely imaginary (k2z < 0) and the solutions
are exponentially growing or decaying with height. The high-frequency acoustic waves fall into the orange
portions of the diagram, with disjoint prograde and retrograde solution branches. For an atmosphere with
convectively stable stratification (N2

> 0), such as an isothermal atmosphere, the low-frequency gravito-
inertial waves also possess prograde and retrograde solution branches. In Figure 3 the prograde solutions
are shaded blue and the retrograde waves pink. The solid purple curve is the bounding frequency between
propagating and evanescent waves and is obtained by setting kz = 0 in the dispersion relation, Equation (20).
The dashed black horizontal lines indicate the inertial frequency range, ! = ±2⌦ and the dotted black lines
indicate the positive and negative values of the buoyancy frequency ! = ±N . The two green dot-dashed
curves correspond to the prograde and retrograde f modes.

Separate dispersion relations can be developed for the acoustic waves and the gravito-inertial waves
by considering high and low frequency limits of the full dispersion relation. In the high-frequency limit, we
ignore those terms that have the frequency ! in the denominator, producing the following dispersion relation

!
2
⇡
�
k
2
x + k

2
z

�
c
2 + !

2
c + 4⌦2

. (23)

The primary rotational modification to the p modes is a slight increase in the acoustic cuto↵ frequency that
a↵ects the prograde and retrograde solutions in the same manner. The low-frequency gravito-inertial waves
are obtained by neglecting the terms (!2

� 4⌦2)/c2,

k
2
z(z) ⇡ �k

2
c � k

2
x

✓
1�

N
2

!2

◆
+

2⌦kx
!H

, (24)

where we have defined a cuto↵ wavenumber, kc, that depends purely on the density stratification

k
2
c (z) ⌘

!
2
c

c2
=

1� 2H 0

4H2
. (25)

3.1. Low-Frequency Gravito-Inertial Waves

The low-frequency version of the local dispersion relation (24) can be solved for the temporal frequency
! as long as we keep in mind that all of the atmospheric profiles and the radial wavenumber are functions of
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height but the frequency is a global, constant property. Equation (24) is quadratic in the frequency; hence,
there are two solutions given by

! =
kx⌦

K2H

"
1±

✓
1 +K

2
H

2N
2

⌦2

◆1/2
#

, (26)

where we have defined a wavenumber K,

K
2(z) ⌘ k

2
x + k

2
z(z) + k

2
c (z) , (27)

that is related to the total wavenumber of the wave, but includes a modification for stratification (through
k
2
c ). The nature of the two solutions depends explicitly on the relative importance of the restoring forces of

buoyancy and the Coriolis force. We will examine the possible extremes in the next two subsections.

3.1.1. Limit of Slow Rotation

First, consider the situation where the magnitude of the buoyancy frequency is enormous compared
to the rotation rate, ⌦/|N | ⌧ 1. In a low-mass star, such conditions occur both above and below the
convection zone, within the outer atmosphere and within the radiative interior, as is illustrated in Figure 2a.
In these regions, the ratio of frequencies, ⌦/|N |, can be treated as a small parameter and we may expand
the low-frequency dispersion relation (24) for slow rotation rate (or strong buoyancy), finding

! = ±
kx

K
N +

kx⌦

K2H
+ · · · . (28)

We have kept only the first two terms in the expansion and neglected all terms of order (⌦/N)3 or smaller.
In a stably stratified atmosphere (N2

> 0), the two solutions correspond to internal gravity waves that
propagate in either the prograde or retrograde directions. In an unstable stratification, both solutions
are unstable convective modes that propagate slowly prograde due to rotation. Of course, the e↵ects of
stratification arise from the buoyancy frequency N , but they also manifest through the wavenumber K that
appears in the denominator of the first term in the expansion. Each wave has a small correction arising
from the Coriolis force that has the familiar form mC⌦, where C = 1/

�
K

2
RH

�
is a parameter depending

on the stratification and wavenumbers. Since the sign of the correction is the same for both the prograde
and retrograde solutions, the prograde mode propagates slightly faster than the retrograde gravity wave.

Figure 3a provides a propagation diagram for an isothermal atmosphere that is representative of the slow
rotation limit (here with ⌦/N = 0.2). The prograde and retrograde branches are only weakly asymmetric,
with the Coriolis force introducing the largest anisotropy at low zonal wavenumber, kx. As the zonal
wavenumber becomes large, the propagation band approach that expected for internal gravity waves |!| < N .
We note that the expansion that appears in Equation (28) is valid not only in the limit of slow rotation, but
also in the limit of short zonal wavelength, ⌦/|N | ⌧ KH ⇡ kxH. Thus, for su�ciently large values of the
zonal wavenumber, the buoyancy frequency term will dominate and the gravito-inertial waves behave like
internal gravity waves.
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3.1.2. Limit of Rapid Rotation

The converse limit, where the rotation rate is much larger in magnitude than the buoyancy frequency may
hold in a star’s convection zone where e�cient convection drives the unstable stratification towards neutral
stability. Of course, the stratification remains slightly unstable, N2

< 0, and the buoyancy frequency itself is
purely imaginary. If we consider the limit of rapid rotation (or equivalently, weak buoyancy), ⌦/|N | � KH,
we find two gravito-inertial waves with very di↵erent natures. One is a prograde-propagating, almost-pure,
inertial oscillation, i.e., a thermal Rossby wave, with a frequency given by

! =
2⌦kx
K2H

+
kxH

2

N
2

⌦
+ · · · , (29)

where we have neglected all terms of order (N/⌦)4 or smaller. The other solution is a slowly propagating
gravito-inertial wave of mixed character,

! = �
kxH

2

N
2

⌦
+ · · · , (30)

where we have kept only the first nonzero term in the expansion. For a stable stratification with N
2
> 0,

like an isothermal atmosphere, the slow gravito-inertial wave is retrograde propagating. For completeness,
this situation is illustrated in Figure 3b, but we recognize that this rapidly rotating limit never occurs in the
stably stratified regions of a star. In an unstable stratification where N

2
< 0, the slow gravito-inertial wave

is prograde. Hence, in a stellar convection zone, both the fast and slow gravito-inertial waves are prograde
with positive frequencies.

The reader should note that the slow gravito-inertial wave approaches zero frequency in the limit of
neutral stability (N2

! 0). Thus, in such an isentropic atmosphere, one of the solution branches corresponds
to a prograde thermal Rossby wave and the other to a geostrophic mode that is stationary in the rotating
frame of reference.

3.2. Wave Cavities and Turning Points

The gravito-inertial waves described by Equations (19) and (24) are radially propagating wherever the
local wavenumber is purely real, k

2
z > 0, and evanescent where it is imaginary, k

2
z < 0. A wave cavity

therefore exists wherever k2z > 0 and the boundaries of that cavity correspond to the turning points of the
equation where k

2
z(z) = 0. As we shall soon see, for low-mass stars this can result in two potential cavities,

one in the convection zone and one in the radiative interior. These cavities are in fact waveguides, with
waves trapped in radius and freely propagating in the zonal direction.

To see where a wave cavity exists, we need to consider the sign of each term in the local dispersion
relation. Since H > 0 and �k

2
c < 0 (the density scale height H decreases with radius in a star, so H

0
< 0),

only two of the terms in the local dispersion relation are potentially positive. We rewrite the low-frequency
dispersion relation (24), moving these two terms to the front of the right-hand side, in order to emphasize
which terms produce wave propagation,

k
2
z =


2⌦kx
!H

+ k
2
x
N

2

!2

�
�
�
k
2
x + k

2
c

�
. (31)
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For a wave cavity to exist, the term in the square brackets must exceed k
2
x+k

2
c . Clearly, this can happen for

low, real-valued frequencies. The first term, the Coriolis term, is large for frequencies less than the rotation
rate and is responsible for inertial wave cavities. In order for this term to be positive the waves must be

prograde (!/kx > 0). The second term, the buoyancy term, is large for frequencies less than the buoyancy
frequency and results in a cavity for internal gravity waves. Both prograde and retrograde gravity waves are
possible, but the term leading to radial propagation is positive only when the atmosphere is stably stratified
N

2
> 0. If both terms are large, a cavity of mixed gravito-inertial waves results. Finally, we note that

even in an unstably stratified atmosphere, N2
< 0, the Coriolis term can dominate the buoyancy term for

su�ciently long wavelengths and for rapid enough rotation. These overstable convective modes have been
stabilized by rotation and have been suggested as a possible mechanism for the excitation of the pulsation of
� Cephei stars (Osaki 1974; Lee & Saio 1986, 1987) through coupling to gravity modes with similar frequency
that reside in the overlying stably stratified outer envelope.

Since the buoyancy frequency dominates the rotation rate in a star’s radiative interior, the resulting
wave cavity is the well-known g-mode cavity with small corrections for the Coriolis force. In the deep interior,
the cuto↵ wavenumber is much smaller than any reasonable zonal wavenumber, kc ⌧ kx. Hence, a bounding
frequency for radial propagation can be found by setting k

2
z = 0 in the dispersion relation that is valid for

slow rotation, Equation (28). Under these conditions, K2 = k
2
x + k

2
z + k

2
c ⇡ k

2
x and propagation occurs for

frequencies below the resulting bound,

|!| < N ±
⌦

kxH
+ · · · . (32)

The positive sign refers to the prograde g mode and the negative sign to the retrograde mode.

In a star’s convection zone, if we can ignore the buoyancy frequency (N2 = 0), we expect a prograde
thermal Rossby wave. We can easily demonstrate that a cavity exists for su�ciently rapid rotation. For an
isentropic stratification, the scale height H reduces to the density scale height, H = H. Further, the density
scale height is an increasing function of depth within a star (because the temperature increases inwards).
Therefore, the positive Coriolis term in the dispersion relation, 2⌦kx/!H, becomes small deep within the
star and at some depth below the photosphere there exists a lower turning point where,

2⌦kx
!H

⇡ k
2
x , (33)

and at this depth, downward propagating thermal Rossby waves are refracted back upwards towards the
photosphere. Similarly, near the photosphere where H becomes small and k

2
c = (1 � 2H 0)/4H2 becomes

large, there is an upper turning point where

2⌦kx
!H

⇡ k
2
c . (34)

At this height an upward traveling inertial wave is reflected downwards. The inertial waves are therefore
trapped between these two turning points and the region in between coincides with the wave cavity. The
general condition for radial propagation throughout a stellar convection zone can be expressed in terms of
the temporal frequency through the following inequality
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! <
2kx⌦

(k2x + k2c )H
+ · · · . (35)

4. Inertial Waves in a Neutrally Stable Stratification

Stellar convection is exceedingly e�cient in transporting heat and the resulting outward heat flux drives
the stratification of the convection zone towards neutral stability. Thus, a commonly adopted model for a
stellar convection zone is an isentropic atmosphere for which N

2 = 0. The buoyancy force vanishes in such
an atmosphere and the waves become pure inertial oscillations, greatly simplifying the behavior of the wave
field. Thus, we will examine inertial-wave propagation in an isentropic stratification with some detail.

A neutrally stable atmosphere is a special case of a polytropic atmosphere. For our purposes, it is
su�cient to define a polytropic atmosphere as one that possesses a constant vertical temperature gradient,
T

0
0 = �Q, and a corresponding temperature profile that is a linear function of height,

T0 = �Qz . (36)

In this expression, we have chosen to place the origin at the height where the linear temperature profile
vanishes. The polytropic atmosphere only exists in the half-space below the origin, z < 0, where the
temperature is positive. For an ideal gas in a plane-parallel atmosphere with constant gravity, such a
temperature gradient results in power-law relations for the thermodynamic variables,

⇢0(z) = A (�z)↵ , (37)

P0(z) =
gA

↵+ 1
(�z)↵+1

, (38)

c
2(z) =

�g(�z)

↵+ 1
, (39)

where A is an arbitrary constant and ↵ is a dimensionless parameter called the polytropic index that is
related to the temperature gradient, Q,

↵ =
g

RgasQ
� 1 . (40)

The density scale height H, the buoyancy frequency N , and cuto↵ wavenumber kc are similarly power laws,

H =
(�z)

↵
, (41)

N
2 =

↵� ↵̂

�↵̂

g

(�z)
, (42)

k
2
c =

↵(↵+ 2)

4z2
. (43)
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The quantity ↵̂ that appears in the expression for the buoyancy frequency is the value of the polytropic
index that corresponds to neutral stability, ↵̂ ⌘ (� � 1)�1. For a fully ionized, monatomic gas with � = 5/3
this corresponds to a polytropic index of ↵̂ = 3/2.

4.1. Wave Cavity for a Neutrally Stable Polytrope

In the limit of neutral stability, the local dispersion relationship that describes low-frequency inertial
waves, Equation (24), simplifies significantly,

k
2
z(z) =

2⌦kx
!H

� k
2
x � k

2
c = �

2kx
z

� k
2
x �

↵(↵+ 2)

4z2
. (44)

In the final expression  is a constant defined by

 ⌘
↵⌦

!
. (45)

The turning points that demark the boundaries of the inertial wave cavity can be found by setting k
2
z = 0

in the local dispersion relation and solving the resulting quadratic equation for the two roots in z,

zturn = �k
�1
x

"
±

r
2 �

↵(↵+ 2)

4

#
. (46)

The negative sign generates the upper turning point and the plus sign the lower turning point. From this
expression for the turning points, we can derive a necessary condition for the existence of a wave cavity. Two
real roots must exist and this requires that the argument of the square root is positive,

! <

r
↵

↵+ 2
2⌦ . (47)

Therefore, for an inertial wave cavity to exist, the frequency must lie below a cuto↵ that depends on both the
rotation rate ⌦ and on the stratification (through the polytropic index ↵). For a neutrally stable polytrope
with ↵ = 1.5 the frequency must satisfy ! . 1.3⌦.

A convenient form of the local dispersion relation can be obtained by defining a dimensionless depth,
⇣ = �2kxz, that scales the vertical coordinate with the zonal wavenumber. The factor of 2 is included
purely for convenience in subsequent equations. Using this spatial variable, the local dispersion relation can
be written in the following form,

k
2
z(z)

k2x

=
4↵

⇣

⌦

!
� 1�

↵(↵+ 2)

⇣2
. (48)

As one can see, the zonal wavenumber drops out of the right-hand side. This allows us to plot the propagation
band as a function of a dimensionless frequency, !/⌦, and dimensionless depth, ⇣, for any zonal wavenumber,
capturing all of the behavior in a single diagram. As the zonal wavenumber changes, the shape of the cavity
does not change, but its vertical extent scales with the wavelength. Figure 4 shows such a propagation
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diagram for an ↵ = 1.5 neutrally stable polytrope. All of the vertically propagating waves are prograde
thermal Rossby waves (blue-shaded region in Figure 4) since the retrograde branch is degenerate at zero
frequency for a neutrally stable atmosphere.

In Figure 4, the dashed red and orange curves illustrate the e↵ects of refraction and reflection in
determining the turning points. Deep in the atmosphere, the balance is that of Equation (33), where the
Coriolis term balances k2x in the local dispersion relation. The red curve is given by solving this balance for
the frequency,

! ⇡
2⌦

kxH
= �

2↵⌦

kxz
. (49)

From this expression it is obvious that waves of di↵erent frequency have di↵erent turning points. Solving
for the lower turning point, zlower, we obtain

zlower ⇡ �k
�1
x

2↵⌦

!
. (50)

In particular, low-frequency waves have a much deeper lower turning point, and in the limit ! ! 0, the
lower turning point becomes infinitely deep.

Similarly, the orange curve in Figure 4 corresponds to the frequencies obtained by balancing the Coriolis
term with k

2
c—as in Equation (34)—which is the balance that holds very close to the outer surface. The

resulting frequency and the concomitant upper turning point, zupper are given by

! ⇡
2⌦kx
k2cH

= �
8⌦kxz

↵+ 1
, (51)

zupper ⇡ �k
�1
x

(↵+ 1)!

8⌦
. (52)

Lower frequencies have cavities that reach closer to the surface. However, since inertial waves are restricted
to frequencies less than 2⌦, the upper turning point can never extend very deeply, zupper > �(↵+ 1)/4kx.

Since the depth of the lower turning point scales inversely with the zonal wavenumber—see Equa-
tion (50), waves with a short zonal wavelength are trapped just below the surface. Hence, these waves do
not sense the spherical geometry of the star, nor the radial variation of its gravitational acceleration. We
can see that our a priori neglect of these two e↵ects are justified a posteriori in the limit of short zonal
wavelengths.

4.2. Analytic Solution for a Neutrally Stable Polytrope

When the atmosphere is polytropic, the standard form of the wave equation reduces to a well-studied
ODE, namely Whittaker’s Equation. To see this, in Equations (19) and (44) make a change of variable to
the nondimensional depth that we introduced earlier, ⇣ ⌘ �2kxz,

d
2 

d⇣2
+




⇣
�

1

4
+

1/4� µ
2

⇣2

�
 (z) = 0 , (53)
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with the definition

µ ⌘
↵+ 1

2
. (54)

Note, both  and µ are constants. The constant  will serve as the eigenvalue of the ODE and it depends
on the wave frequency—see Equation (45). We note that the definition of  that appears in Equation (45)
is only valid is the low-frequency regime of the local dispersion relation (44). The constant µ is a parameter
that depends purely on the stratification. Equation (19) is Whittaker’s Equation (Abramowitz & Stegun
1964) which has two solutions called Whittaker functions, Mµ (⇣) and Wµ (⇣). These Whittaker functions
can be expressed in terms of Kummer’s confluent hypergeometric functions of the first and second kind, M
and U (confusingly, sometimes referred to as Kummer’s function and Tricomi’s function, respectively),

Mµ (⇣) = e
�⇣/2

⇣
µ+1/2

M (�⌘, 1 + 2µ, ⇣) , (55)

Wµ (⇣) = e
�⇣/2

⇣
µ+1/2

U (�⌘, 1 + 2µ, ⇣) , (56)

where ⌘ ⌘  � (µ+ 1/2). The general solution for the Lagrangian pressure fluctuation is therefore a linear
combination of these two solutions,

�$(z) = ⇢
�1/2
0  (z) = z e

kxz [CaM (�⌘,↵+ 2,�2kxz) + CbU (�⌘,↵+ 2,�2kxz)] , (57)

with arbitrary constants Ca and Cb whose ratio is determined by the boundary conditions.

4.3. Boundary Conditions and Eigenmodes

When physically appropriate boundary conditions are applied in height, Whittaker’s Equation generates
a discrete spectrum of eigenmodes with  serving as the eigenvalue. Since  is a function of the frequency,
each eigenmode will possess a specific eigenfrequency,

!n =
↵⌦

n
, (58)

where n is the radial order of the mode and n = n(kx) is the nth eigenvalue which is potentially a function
of the zonal wavenumber.

4.3.1. Eigenmodes for a Semi-Infinite Polytrope

Whittaker’s equation has two singular points, one at the origin ⇣ = 0 (i.e., at the upper surface of the
polytrope, z = 0) and the other at infinity ⇣ ! 1 (or z ! �1). In this subsection, we will model the
convection zone of a star as a semi-infinite polytropic layer that extends between these two singular points.
Obviously, a star’s convection zone has a finite depth. But, as we have already discussed, the wave cavity is
confined to a region near the upper surface and the depth to which this cavity extends is proportional to the
zonal wavelength of the wave. Thus, if the zonal wavelength is su�ciently short, the lower turning point of
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the wave may be many e-folding lengths from the physical boundary at the bottom of the convection zone.
Hence, such waves do not sense the bottom and we can treat the domain as semi-infinite. In the subsequent
subsection, §4.3.2, we will consider what happens when the eigenfunctions begin to reach deeply enough to
be influenced by the lower boundary.

If we apply boundary conditions of regularity at the origin and at infinity (at the two singular points),
the solution simplifies dramatically. The U confluent hypergeometric function is badly divergent at the origin,
so we reject it. The M confluent hypergeometric function is divergent at infinity unless the eigenvalue 
takes on specific discrete values. Explicitly, the parameter ⌘ must be a non-negative integer,

⌘n = n � (µ+ 1/2) = n , n 2 0, 1, 2, 3, . . . . (59)

For these integer values of ⌘, the Kummer functions reduce to associated Laguerre polynomials and, to
within an arbitrary constant amplitude, Cn, the eigenfunctions become,

�$n(z) = Cn z e
kxz L

(↵+1)
n (�2kxz) , (60)

where L
(↵+1)
n is the nth-order associated Laguerre polynomial.

For these boundary conditions the eigenfrequencies have the unexpected property that they are insen-
sitive to the zonal wavenumber. Inserting Equation (59) into Equation (58), we obtain a global dispersion
relation that expresses the mode frequency as a function of only the radial order n, the rotation rate ⌦, and
the polytropic index ↵,

!n =
2⌦

1 + 2 (n+ 1) /↵
. (61)

In Section 5.4 we discuss in more detail why the eigenfrequencies for this set of boundary conditions are
independent of the zonal wavenumber. But, in short, this property is the result of the self-similarity of a
polytropic atmosphere and the boundary conditions; neither possesses an imposed spatial scale. In the next
subsection, we will consider a finite spatial domain and discover that the self-similarity of the boundary
conditions is broken and the eigenfrequencies will subsequently depend on the zonal wavenumber.

The eigenfrequencies are indicated in Figure 4 by plotting a horizontal dotted blue line at the frequency
corresponding to each eigenmode. Each line extends between the two turning points, thus illustrating the
spatial extent of the wave cavity for each eigenmode. As is typical for inertial oscillations, the lowest radial
orders n possess the highest frequencies and there is an accumulation point at zero frequency as the mode
order becomes large (n ! 1).

Figure 5 shows radial eigenfunctions for modes corresponding to the lowest four radial orders. The
left panel shows the eigenfunction for the Lagrangian pressure fluctuation, scaled by !/g such that the
eigenfunctions have physical units of velocity. The right-hand panel of Figure 5 presents the corresponding
eigenfunctions for the zonal velocity, Equation (15). We do not illustrate the vertical velocity separately,
because the vertical velocity is nearly proportional to the reduced Lagrangian pressure fluctuation when
in the low-frequency limit, see Section 5.2. In fact, in this low-frequency limit, the left-hand panel plots
the imaginary component of the vertical velocity as well as the Lagrangian pressure fluctuation, as can be
verified by taking the low-frequency limit of Equation (16). Each of the eigenfunctions has been normalized
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such that the zonal velocity has a maximum amplitude of unity that is achieved at the upper surface. In
general, the zonal velocity is the larger of the two velocity components, but this is especially true near the
upper surface. The vertical velocity vanishes at the upper boundary for all modes, while the zonal velocity
reaches maximum amplitude at the surface. This is a result of the upper surface being a regular singular
point of Whittaker’s equation.

The wave cavity is di↵erent for each mode and extends from the lower turning point—which is indicated
in Figure 5 by the solid circular dot—to the upper turning point which lies just below the upper boundary
(not illustrated for clarity). For the four radial modes that are shown, the upper turning points all lie very
close to the upper surface and very near each other, with kxzupper ranging between �0.43 and �0.14.

4.3.2. Eigenmodes for a Polytropic Layer of Finite Depth

As can be seen in Figure 5 as the zonal wavelength increases or the frequency decreases, the eigen-
functions reach deeper and deeper into the star. Eventually, the eigenfunction becomes sensitive to the
bottom of the convection zone. To test such e↵ects we consider a finite layer that spans the range of heights
z 2 [�D, 0 ], where D = 200 Mm is approximately the depth of the Sun’s convection zone. Hence, boundary
conditions are applied at the singular point corresponding to the origin and at the regular point z = �D. As
before, we require regularity at the upper surface. For simplicity, we require that the Lagrangian pressure
fluctuation vanishes at the bottom of the convection zone, �$(�D) = 0. This boundary condition is consis-
tent with one of impenetrability w = 0 at low frequencies. As before, the boundary condition of regularity at
z = 0, forces us to reject the U confluent hypergeometric function. The boundary condition at the bottom
of the convection zone then generates a transcendental global dispersion relation involving the M Kummer
function,

M (�⌘, ↵+ 2, 2kxD) = 0 . (62)

We have solved this equation numerically for the discrete set of eigenvalues (⌘ = ⌘n), and the results are
shown in Figure 6. The solid black, red, blue, and green curves illustrate the mode frequencies for the radial
fundamental n = 0 (black) and the first three overtones n = 1, 2, and 3 (red, blue and green respectively).
The light-blue curves represent all of the higher order overtones, which have not been labeled for the sake of
clarity. As expected there is an accumulation point at zero frequency as n ! 1, and this causes all of the
pale blue curves to appear to merge into a solid band of color.

Two specific eigenmodes are marked along each of the first four dispersion curves. The diamond sym-
bol corresponds to a mode with low wavenumber m = kxR� = 10 and the circular symbol to a higher
wavenumber m = 40. The eigenfunctions for these modes are shown in Figure 7. The upper panels show
the Lagrangian pressure fluctuation and the zonal velocity for the smaller wavenumber (m = 10), while the
lower panels illustrate the same quantities for the larger wavenumber (m = 40).

At low values of the zonal wavenumber, the frequency along a single dispersion curve increases linearly
with wavenumber. This is the wavenumber regime in which the lower turning point of the wave equation lies
below the lower boundary, zlower < �D. Thus, the eigenfunctions extend throughout the entirety of the finite
domain, and the lower boundary condition has significant influence on the eigenmodes. The modes marked
with the diamond symbols in Figure 6 are all within this regime, and one can see that their eigenfunctions
remain propagating all the way to the bottom of the spatial domain.
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As the wavenumber becomes larger, the lower turning point eventually crosses the lower boundary and
passes into the solution domain. We can approximate the frequency for which the lower turning point and
the lower boundary are coincident (zlower = �D) by using Equation (50),

!

⌦
⇡

2↵

kxD
. (63)

This transition frequency is shown in Figure 6 using the dashed purple curve. Further increase to the
wavenumber results in the withdrawal of the wave cavity from the lower boundary and the presence of that
lower boundary becomes less and less important to the eigenmode. Hence, for su�ciently large wavenumber
(those that lie to the right of the dashed purple curve), the dispersion curves in Figure 6 asymptote to
the constant frequencies associated with eigenmodes of the semi-infinite domain. These asymptotic values,
Equation (61), are shown with the dotted lines. For the sake of clarity, dotted lines are shown only for
the first seven modes. The eigenmodes that are indicated by the circular symbols all lie within this high-
wavenumber regime and possess lower turning points that lie between the two boundaries. As such, their
wave cavities do not extend all the way to the bottom of the convection zone. To illustrate this, Figure 7d
indicates the lower turning point for each mode with an appropriately colored circular dot.

4.3.3. Eigenmodes for a Submerged Polytropic Layer

In this subsection we consider a buried layer of finite radial extent that is fully submerged beneath the
polytrope’s singular upper surface. We place impenetrable boundaries at two depths, z = �D and z = �d,
with D > d. Thus as in the previous subsection, the lower boundary is at �D, but now instead of being
located at the origin, the upper boundary is at �d. Since, neither of the ODEs singular points lie within the
spatial domain, z 2 [�D,�d], we must retain both of the confluent hypergeometric functions and we must
find the linear combination of M and U that causes the Lagrangian pressure fluctuation (or, equivalently at
low frequencies, the vertical velocity) to vanish at both boundaries. This is readily accomplished by using a
numerical root finder to obtain the roots of the following matrix determinant,

����
M (�⌘,↵+ 2, 2kxD) U (�⌘,↵+ 2, 2kxD)
M (�⌘,↵+ 2, 2kxd) U (�⌘,↵+ 2, 2kxd)

���� = 0 . (64)

Figure 8 provides the resulting dispersion diagram for a model with d = 30 Mm and D = 200 Mm. The
depression of the upper boundary condition below the singularity of the polytrope modifies the asymptotic
behavior for large wavenumbers. Instead of approaching a constant value, the frequencies monotonically
decrease after achieving a local maximum which lies near the wavenumber marking the transition from low-
to high-wavenumber regimes in Figure 6. This behavior arises because the size of the wave cavity is reduced
for those waves that have an upper turning point that lies above the upper boundary zupper > �d. In order
to fit the same number of vertical wavelengths within the reduced domain, the frequency must be decreased.
Further, the truncation of the wave cavity is more severe for waves with a large zonal wavenumber because
the cavity is fundamentally thinner. This same frequency behavior was found previously by Glatzmaier &
Gilman (1981), but they solved the ODE by Frobenius expansions and presented solutions only for the radial
fundamental n = 0.
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5. Discussion

Under the assumptions of short longitudinal wavelengths and 2D motions perpendicular to the rotation
axis, we have derived an ODE, Equation (18), that describes the propagation of atmospheric waves through
an atmosphere with general stratification. There are two families of solutions: a high-frequency branch of
acoustic waves and a low-frequency branch of gravito-inertial waves. From this governing ODE, we have
derived a local dispersion relation and have demonstrated that in the absence of buoyancy the thermal
Rossby waves are trapped radially in a waveguide that is confined to the upper reaches of the convection
zone. The upper boundary of this waveguide is caused by reflection of an upward propagating wave by the
density stratification—specifically, when the vertical wavelength becomes comparable to the density scale
height. This reflection is substantiated in the dispersion relation by a cuto↵ wavenumber that is related to
the acoustic cuto↵ frequency. The lower boundary of the waveguide is caused by the upward refraction of
obliquely propagating wave fronts as the wave propagates downward into a region with increasing density
scale height. Due to the refractive nature of this turning point, waves with shorter longitudinal wavelengths
(large kx) have a shallower wave cavity and are trapped closer to the upper boundary.

5.1. Location of the Waveguide

The exact location of the cavity for thermal Rossby waves is rather sensitive to the superadiabatic
gradient. We have shown that for a neutral stratification, N2 = 0, the cavity is in the upper portion of
the convection zone. This result is robust as long as the magnitude of the buoyancy frequency is small
compared to the rotation rate. Unfortunately, this condition is unlikely to hold true for the solar-like stars.
Figure 2 presents the buoyancy frequency in a standard model of the Sun’s internal structure, i.e., Model
S of Christensen-Dalsgaard et al. (1996). The left-hand panel shows the square of the buoyancy frequency
throughout the Sun’s interior (blue curve). The convection zone corresponds to the region where the square
of the buoyancy frequency is negative. For reference, the Sun’s Carrington rotation rate ⌦� = 2.87⇥ 10�6

s�1 is indicated by the two red horizontal lines (located at !2 = ±⌦2
�). The figure suggests that the upper

and lower halves of the convection zone are in converse regimes. The upper convection zone is in the slow
rotation limit where |N | � ⌦ and the deeper portion of the convection zone is in the limit of rapid rotation,
|N | ⌧ ⌦. If this suggestion is true, the upper portion of the convection zone is inherently unstable for
waves of all wavelengths, but the lower portion of the convection zone might support stable thermal Rossby
waves, or equivalently overstable convective modes, if their wavelengths are su�ciently long. How long? An
estimate can be derived from the local dispersion relation—Equation (26), by requiring that the temporal
frequency is purely real. When the square of the buoyancy frequency is negative, this provides a restriction
on the wavenumber,

k
2
x + k

2
z <

⌦2

H2 |N2|
� k

2
c . (65)

Deep in the convection zone we can ignore k
2
c and H ⇡ H, resulting in the following expression for the

wavelength, �,

�

2⇡
=
�
k
2
x + k

2
z

��1/2
= H

|N |

⌦
. (66)

From Figure 2, we estimate that at the base of the convection zone the ratio of the buoyancy frequency
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to the rotation rate has a typical value of |N | /⌦ ⇠ 0.1. Further, at the base of the convection zone the
density scale height is roughly 100 Mm. Therefore, for local stability, the gravito-inertial waves must have
wavelengths longer than 60 Mm (⇠ 2⇡ ⇥ 0.1 ⇥ 100 Mm). For waves with similar longitudinal and vertical
wavelengths, such waves would have azimuthal orders m . 30.

The existence of a deep cavity for overstable convective modes in the Sun remains rather speculative
for a variety of reasons. First, the wavelength bound that we just estimated is su�ciently large that our
short wavelength approximation is beginning to fray. Second, the stability condition is purely a local one.
Calculating global stability would require solving the eigenvalue problem for a solar-like stratification. Third,
while the sound speed and density profile of Model S (and other solar models) have been very well tested by
helioseismology, the superadiabaticity in the convection zone remains poorly constrained. Helioseismology
can only place a rather large upper limit, and the buoyancy frequency could be much smaller in magnitude and
remain consistent with observations. In most solar models, the superadiabaticity is completely determined by
mixing-length theory. The entropy gradient is fixed by the requirement that the convective heat flux carries
a solar luminosity through the convection zone. Thus, the modeled buoyancy frequency in the convection
zone is only as reliable as mixing-length theory is in detailed modeling of the convective heat transport.

5.2. The Anelastic Limit

Even though internal gravity waves are usually much lower in frequency than acoustic waves, compress-
ibility is still important for their propagation. Hence, anelastic treatments of the continuity equation, where
the mass flux is assumed to be divergenceless, r · (⇢0u) ⇡ 0, often cause internal gravity waves to fail to
conserve energy (Brown et al. 2012). This is the primary reason that here we have adopted a continuity
equation appropriate for a completely compressible fluid. Despite these well-known issues for internal grav-
ity waves, one still hopes that anelasticity should hold in the limit of slowly evolving motions, i.e., for low
frequencies. Satisfyingly, this proves to be true. If we assume that the waves of interest have very low
frequency, !2

⌧ gkx, we may consider limits of Equations (15) and (16) under the condition that !2
⌧ �

2.
To leading order we obtain,

u ⇡ �
!

gkx � 2⌦!

✓
d

dz
�

1

H

◆
�$ , (67)

w ⇡
i!kx

gkx � 2⌦!
�$ . (68)

If one works their way back through the derivation of Equations (15) and (16), one can determine that
this low-frequency approximation is equivalent to neglecting the inertial term that appears on the left-hand
side of the momentum equation (9). These equations demonstrate that very low-frequency waves can be
expressed using a stream function for the mass flux,

⇢0u ⇡ �
d 

dz
, (69)

⇢0w ⇡
d 

dx
, (70)

 ⌘
!

gkx � 2⌦!
⇢0�$ , (71)
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where the stream function is proportional to the reduced Lagrangian pressure fluctuation. Therefore, the
mass flux must be divergenceless r · (⇢0u) ⇡ 0, and the anelastic approximation is satisfied. Further, by
using Equation (13) to express the Lagrangian pressure fluctuation in terms of the Eulerian fluctuation, one
can demonstrate the these very low-frequency anelastic flows are geostrophic to leading order,

⇢0u ⇡
1

2⌦

dP1

dz
, (72)

⇢0w ⇡ �
1

2⌦

dP1

dx
. (73)

For very low, but nonzero frequencies, inertia and buoyancy appear as higher-order perturbations to geostrophic
balance, and its the dynamics of these perturbations that lead to prograde propagation of the flow pattern.

5.3. Geometry of the Eigenfunctions

The eigenfunctions that we illustrate in Figures 5 and 7 correspond to a longitudinal sequence of rolls
aligned with the rotation axis. In order to illustrate this geometry, we provide Figure 9, which shows the 2D
motion for four distinct eigenfunctions. The upper panels correspond to the fundamental radial eigenmode,
n = 0, and the bottom panels to the first radial overtone, n = 1. The right and left panels provide
eigenfunctions for two di↵erent zonal wavenumbers, a small wavenumber m = kxR� = 40 on the left and
a larger wavenumber m = 80 on the right. In each panel, longitude runs from right to left and the outer
surface of the star’s convection zone lies at the top with the center of the star located downwards beyond
the bottom of each panel. The reader’s viewpoint is consistent with looking down on a piece of the star’s
equatorial plane from above the north pole.

The colored images in Figure 9 illustrate the stream function,  , for the eigenfunction’s mass flux. The
black curves mark the isocontours of the stream function and, hence, indicate the flowlines. Red tones and
dashed isocontours correspond to negative values of the stream function resulting in clockwise flow along the
isocontours (anticyclonic motion). Conversely, the blue tones and solid curves indicate positive values of the
stream function and counter-clockwise, cyclonic flow. The thick black lines indicate the zero contours, or
the boundaries between cells. The flow field is composed of parallel rolls whose axes are all aligned with the
star’s rotation vector. A single zonal wavelength consists of two counter-rotating rolls, one clockwise and
the other counter-clockwise.

As expected, the fundamental mode consists of a single roll in depth while the first radial overtone
possesses two counter-rotating rolls stacked in depth. The upper roll looks weak in these renditions. This
is an artifact of the stream function generating the mass flux instead of the velocity field itself. Since, the
mass density vanishes at the upper surface, so too does the mass flux.

The stream function for the fundamental mode n = 0 (Figures 9a,b) should be compared to the results
of the numerical simulation illustrated in Figure 1b. Here and in the anelastic simulations shown in Figure 1,
the vertical elongation of the vortical columns is a function of the density stratification. The most obvious
di↵erence between the eigenfunctions derived here and the numerical simulation is the cellular tilt. The
numerical simulations demonstrate that the upper portion of each cell is centered at a higher longitude than
the lower portion. Such tilting behavior, or in extreme cases spiralling behavior, is a common feature that
appears in di↵usive solutions in spherical geometry (Zhang et al. 1992; Yano 1992; Jones et al. 2000, 2009).
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Neither of these e↵ects are present in the calculations that we perform here.

5.4. Self-Similarity of a Polytropic Atmosphere

In Section 4.3.1 we find that the eigenfrequencies for inertial oscillations within a semi-infinite isentropic
atmosphere lack dependence on the zonal wavenumber. This unexpected result is due to the self-similarity of
an infinitely deep polytropic atmosphere. All of the thermodynamic profiles (temperature, pressure, density,
density scale height, etc.) are power-law functions of the depth and lack an imposed spatial scale. Hence,
when trying to nondimensionalize the ODE that describes inertial waves within a polytropic atmosphere, the
only length scale that is available is the zonal wavelength. There is only one way to form a nondimensional
depth ⇣ (the independent variable of the governing equation), and it must be proportional to �kxz. The
resulting non-dimensional form of the governing equation is thus self-similar and so too are its solutions.
This is the reason that the eigenfunctions of the semi-infinite polytrope have the same shape, independent
of the zonal wavenumber, but their spatial extent in all directions scales linearly with the zonal wavelength.
For example, consider the eigensolutions illustrated in Figure 9; the shape of the rolls in the equatorial plane
is independent of the longitudinal wavelength (compare the right and left panels). The only di↵erence is
their spatial scale. Waves with a short longitudinal wavelength have a short vertical wavelength, and vice
versa.

The only way to break this self-similarity is by the imposition of a spatial scale through the boundary
conditions. For a semi-infinite atmosphere, with boundary conditions placed at the origin and infinity, there
is no imposed depth. Hence, the boundary conditions are also self-similar and the resulting eigenfrequencies
can only depend on the stratification (through the polytropic index) and on the rotation rate. However,
when boundaries are placed at finite depths within the polytropic atmosphere, the depth of the domain
provides a length scale and the eigenfunctions and eigenfrequencies can now depend on the wavenumber.
For example, if we place boundaries at the origin and at a depth of z = �D, as we did in Section 4.3.2, the
eigenfrequencies can now depend on the zonal wavenumber through the combination kxD.

5.5. The f Mode

From Equations (15) and (16) one can deduce that there is a solution that is incompressible and has
vanishing Lagrangian pressure fluctuation everywhere �$ = 0. In order to avoid the trivial solution, the
dispersion relation must satisfy !4 = �

4. The negative root, !2 = ��
2 corresponds to an unphysical solution

with an unbounded energy density. The positive root, !2 = �
2 leads to the traditional f mode, or surface

gravity wave, that has the same exponential behavior as the f mode for a non-rotating star, but a modified
eigenfrequency,

w = �iu = exp (kxz) e
ikxx e

�i!t
, (74)

! = ±
�
gk + ⌦2

�1/2
� ⌦ . (75)

This dispersion relation is rather di↵erent from that of Poincaré waves because in our model the gravitational
acceleration and the rotation vector are orthogonal, while in the traditional derivation of Poincaré waves the
two vectors are parallel.
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In the limit of slow rotation, we recover the traditional dispersion relation for deep water waves but
with a rotational correction,

! = ±

p
gk � ⌦+ · · · . (76)

However, for rapid rotation, there is a fast retrograde solution that is primarily an inertial oscillation

! = �2⌦�
gk

2⌦
+ · · · , (77)

and a slow prograde solution that is a mode of strongly mixed character,

! =
gk

2⌦
+ · · · . (78)

Figure 3 presents the frequency of both the prograde and retrograde surface gravity waves using the
dot-dashed green curves. When the rotation is strong, the anisotropy between the prograde and retrograde
solutions can be rather extreme. In the right panel (rapid rotation), the prograde f mode’s frequency is
nearly equal to the upper frequency bound for the gravito-inertial waves, while the retrograde f modes
shadows the boundary of the retrograde acoustic waves.

5.6. Observability of Thermal Rossby Waves in the Sun’s Convection Zone

Recent observations of inertial oscillations in the Sun have been of three types: classical equatorially
confined Rossby waves (Löptien et al. 2018; Liang et al. 2019; Proxauf et al. 2020; Hanasoge & Mandal 2019;
Alshehhi et al. 2019; Hanson et al. 2020; Hathaway & Upton 2021), critical-latitude inertial modes (Gizon et
al. 2020, 2021), and high-latitude inertial modes (Bogart et al. 2015; Gizon et al. 2021; Hathaway & Upton
2021). Thermal Rossby waves have not yet been observed. Why is this when thermal Rossby waves are such
a prominent feature in laboratory experiments and in numerical simulations of the solar convection zone?

We suggest two related possibilities: the thermal Rossby waves are all unstable or the potentially stable
long-wavelength waves have a cavity that is too deep to easily measure the waves at the solar surface.
Convection in a star like the Sun, and in fact all stars, is highly supercritical. So, the thermal Rossby waves
that appear at convective onset are not those that we should expect to see in solar observations. Instead,
due to the extreme level of turbulence, we should expect to see the highly nonlinear cousins of those thermal
Rossby waves that appear under more laminar conditions. Surprisingly, numerical simulations suggest that
the spatial scale of the most unstable thermal Rossby wave persists in highly turbulent regimes (Hindman et
al. 2020a). This spatial scale is often associated with what are termed convective banana cells (e.g., Wilson
1988; Miesch et al. 2000; Hotta et al. 2015; Nelson et al. 2018). Despite the fact that banana cells are
immediately obvious to the eye in movie sequences from convection simulations, they do not form an obvious
feature in spectra when the fluid is su�ciently turbulent (e.g., Hindman et al. 2020a). The power from these
nonlinear waves is broadly spread across azimuthal order m, harmonic degree `, and temporal frequency !.
Thus, the power does not form a clean dispersion relation that would verify its wavelike nature. One can
deduce that the convective features propagate prograde relative to the di↵erential rotation, but extracting
more information has proved problematic.
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Further, we must admit that it is uncertain what spatial scale should typify thermal Rossby waves in
the Sun. The convective columns that appear in numerical simulations possess zonal wavenumbers that
depend on the convection’s Rossby number Ro (Featherstone & Hindman 2016). Unfortunately, the Sun’s
Rossby number is not well constrained observationally. Thus, we are biased by those numerical models that
produce dynamos with desirable properties. For example, global-scale dynamo simulations with low Rossby
numbers, on the order Ro ⇠ 10�2, can generate cycling dynamo solutions (e.g., Ghizaru et al. 2010; Brown
et al. 2011; Racine et al. 2011; Käpylä et al. 2012; Fan & Fang 2014) with equatorward migration of magnetic
field (e.g., Käpylä et al. 2013). When the Rossby number has such a low value, the spatial scale associated
with the thermal Rossby waves is typically rather small, corresponding to an azimuthal order of m ⇠ 100
(Featherstone & Hindman 2016). Unfortunately, in actual solar observations, such short wavelength waves
would be easily confused with and masked by supergranulation.

All of these di�culties have so far made the search for peaks in the power spectra of the observed velocity
field an unfruitful method to detect thermal Rossby waves. Instead, identifying thermal Rossby waves may
require careful long-duration averages of the correlations between flow components that are indicative of the
thermal Rossby wave’s horizontal wavefunction. Such correlations may have already been detected years
ago by Schou (2003) and Gizon et al. (2003) when they found wave-like properties in the supergranulation
signal.

Even if the conjecture that we proposed in Section 5.1 is correct, and the lower half of the convection
zone can indeed form a waveguide for long wavelength thermal Rossby waves, those wave modes may not be
visible at the surface. Assessing the visibility of the gravito-inertial modes would require knowing how the
waves are excited and damped, thus, allowing estimates of the mode amplitude to be made. Further, since
the cavity is confined to the deeper layers of the convection zone, the wavefunction at the surface (where it
can be measured) will have undergone many e-folding decay lengths. A similar problem exists for the Sun’s
g modes. The stellar physics community is certain that gravity modes must exist in the Sun’s radiative
interior, but we have not convincingly detected the action of such modes at the solar surface.

The very sensitivity of the thermal Rossby waves to the superadiabatic gradient which leads to all of the
nuisances in the observability of those modes, would make the thermal Rossby waves, if detected, an excellent
seismic diagnostic of the superadiabaticity in the convection zone. Since, the thermal Rossby waves tend to
be confined near the equator—see Figure 1, they would be most sensitive to the gradient at low latitudes.
It might be possible to assess weak latitudinal variations in the buoyancy frequency if the information from
thermal Rossby waves were to be combined with observations of the high-latitude inertial oscillations that
were recently discovered by Gizon et al. (2021). As discussed in Gizon et al. (2021) the high-latitude modes
also possess sensitivity to the superadiabaticity, but in the polar regions.
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Fig. 1.— An example of a thermal Rossby wave that appears prominently at convective onset in a 3D numerical

simulation of convection in a spherical shell, specifically Model #68 from Hindman et al. (2020a). (a) The axial

vorticity (!y = ! · ⌦̂) in orthographic projection shown on a spherical surface that lies just below the outer boundary

of the computation domain. Red tones indicate anticyclonic vortices and blue tones cyclonic flow. This particular

simulation produces a wave with 42 complete wavelengths girding the equator (m = 42). Each zonal wavelength

consists of two counter-spinning rolls whose axes are aligned with the rotation vector. (b) The axial component of

the vorticity illustrated on the equatorial plane as viewed from above the north pole. Red tones indicate anticyclonic

(clockwise) vortices and blue tones correspond to those that are cyclonic (counter-clockwise). From these images, it is

clear that the thermal Rossby wave is trapped radially and latitudinally; the wave resides in a cavity that is confined

to low latitudes and to radii that lie very close to the outer surface. The numerical simulations that generated

the flow data illustrated by these images was generated by the Rayleigh convection code (Featherstone et al. 2021;

Featherstone & Hindman 2016; Matsui et al. 2016).
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Fig. 2.— Radial atmospheric profiles for the Sun, as specified by Model S from Christensen-Dalsgaard et al. (1996).

(a) The square of the buoyancy frequency N
2
is illustrated with the blue curve as a function of radius. The ordinate

axes is logarithmically scaled in both the positive and negative values, with a region of linear scaling in the middle

that extends between the dotted lines. The Sun’s convection zone coincides with the region where the square of the

buoyancy frequency is negative and is indicated by the gray shaded region. The two red horizontal lines mark the

square of the Carrington rotation rate, ±⌦�
2
, where ⌦ = ⌦� = 2.87 ⇥ 10

�6
s
�1

. The entire radiative interior is in

the regime of slow rotation, N � ⌦. (b) The density scale height H (blue curve) and the scale height H (green curve)

shown as functions of radius in the Sun. The two scale heights are nearly identical in the convection zone and have

roughly the same magnitude throughout much of the radiative interior.
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Fig. 3.— Propagation diagrams for an isothermal atmosphere in the limits of (a) slow rotation and (b) rapid

rotation. For each limit, the ratio of the buoyancy frequency to the rotation rate is indicated at the top of the panel.

Those frequencies and wavenumbers that correspond to radially propagating waves appear in the shaded regions.

The prograde and retrograde branches of the acoustic waves appear in orange. The light-blue region indicates

gravito-inertial waves that propagate zonally in the prograde direction and the pink region contains the retrograde

gravito-inertial waves. The horizontal lines indicate the characteristic frequencies of the atmosphere. The dotted

lines mark the positive and negative values of the buoyancy frequency, ! = ±N and the dashed lines bound the

inertial frequency range, ! = ±2⌦. At low wavenumbers the low-frequency waves are gravito-inertial waves that have

distinctly anisotropic branches. At high wavenumbers, these waves become nearly isotropic internal gravity waves.

The two dot-dashed green curves indicate the f modes for the rotating star.
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Fig. 4.— Propagation diagram for thermal Rossby waves in an atmosphere that is neutrally stable to convective

overturning. At each height in the atmosphere, the frequencies of waves that are vertically propagating are shaded

pale blue. All such waves have positive frequencies and propagate longitudinally in a prograde direction (in the

rotating reference frame). The solid purple curve indicates the upper frequency bound for radial propagation. If

one draws a horizontal line at a specific frequency, the two points where this line crosses the upper bound denote

the turning points and the blue shaded region in between corresponds to the inertial-wave cavity. The red and

orange dashed lines are approximations to the upper frequency bound that are valid deep in the atmosphere (red)

and near the upper surface (orange)—see the text, Equation (49). The thin, horizontal, blue, dotted lines mark the

eigenfrequencies of the thermal Rossby modes.
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Fig. 5.— Radial eigenfunctions for a semi-infinite neutrally-stable polytropic atmosphere. The two panels correspond

to (a) the reduced Lagrangian pressure fluctuation �$ and (b) the zonal velocity u. For modes like these with low

frequency, the left-hand panel also indicates the imaginary part of the vertical velocity w. The first four radial modes

with radial orders n = 0, 1, 2, and 3 are indicated by the color of the curve (black, red, blue, and green, respectively).

The colored dots that appear on the eigenfunction curves indicate the location of the lower turning point of the wave

cavity. The upper turning points are all very close to the upper boundary, z = 0, and are omitted for clarity. Note,

the eigenfunctions only depend on the zonal wavenumber through a self-similar scaling of the vertical coordinate.

Thus, these eigenfunctions are universal and apply to all modes of the relevant radial order, independent of the zonal

wavelength.
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Fig. 6.— Eigenfrequencies for a neutrally stable layer of finite depth shown as a function of the zonal wavenumber

kx. The upper boundary of the layer is located at the origin, and the bottom of the layer is 200 Mm deep mimicking

the Sun’s convection zone. At the upper boundary we require that the solutions remain finite and on the lower

boundary we impose a condition of impenetrability. The eigenfrequencies of the first four radial modes are shown

with the black (n = 0), red (n = 1), blue (n = 2), and green (n = 3) curves. Higher order overtones (n > 3) are

drawn in pale blue. At very short zonal wavelengths (high kx) the eigenfunctions do not sense the presence of the

lower boundary. Hence, they have the same frequencies as the semi-infinite layer. These asymptotic frequencies are

indicated with the dotted horizontal lines. As the wavenumber decreases (and the zonal wavelength grows), the lower

edge of the wave cavity approaches the bottom of the domain and eventually crosses it. The frequency for which this

crossing occurs is indicated by the dashed purple curve. For wavenumbers less than this threshold, the eigenfunctions

(and eigenfrequencies) are strongly influenced by the lower boundary condition and the frequency decreases linearly

towards zero frequency at zero wavenumber. Along the first four dispersion curves are marked two modes. The

diamonds indicate modes with wavenumber kxR� = 10 and the circles correspond to modes with kxR� = 40. The

eigenfunctions for these modes are illustrated in Figure 7.
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Fig. 7.— Eigenfunctions for the modes indicated by the diamonds (top panels) and circles (bottom panels) that

appear in Figure 6. The upper panels correspond to modes with a low zonal wavenumber given by kxR� = 10, and

the lower panels to a larger wavenumber kxR� = 40. The left-hand panels, (a) and (c), show the vertical variation of

the reduced Lagrangian pressure fluctuation, �$(z), and simultaneously the imaginary part of the vertical velocity

w(z). The right-hand panels, (b) and (d), present the zonal velocity u(z). The eigenfunctions for first four radial

orders, n = 0, 1, 2, and 3, appear as the black, red, blue, and green curves, respectively. Using the same color scheme,

the lower turning point for each mode is indicated by a large circular dot. For the modes that appear in the upper

panels, the lower turning point is below the lower boundary, and thus unillustrated outside the solution domain.
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Fig. 8.— Eigenfrequencies as a function of zonal wavenumber kx for a fully submerged polytropic layer with lower and

upper boundaries at z = �200 Mm and z = �30 Mm, respectively. A condition of impenetrability is applied at both

boundaries. The colors have the same meaning as in Figure 6. For low wavenumbers, the eigenfrequencies increase

linearly and this behavior is caused by the lower turning point being below the lower boundary of the convection

zone. The upper boundary condition exerts its influence most strongly at large wavenumbers. For these modes, the

upper turning point lies above the upper boundary of the domain, and the wave cavity is e↵ectively truncated by the

upper boundary condition. A smaller wave cavity requires smaller frequencies in order to squeeze the same number

of vertical wavelengths within the cavity. Hence, at su�ciently large wavenumber, the eigenfrequencies decrease

monotonically with increasing wavenumber as the wave cavity becomes increasingly truncated.
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Fig. 9.— The stream function for the mass flux for four eigenmodes within a semi-infinite polytropic atmosphere.

Red tones with dashed black isocontours indicate negative values of the stream function and blue tones and solid

isocontours positive values. The flow field is being viewed on a section of the equatorial plane as viewed from above

the north pole. Motion in this plane is clockwise (anticyclonic) along the isocontours when the stream function is

negative, and counter-clockwise (cyclonic) along the contours for positive values. The upper row of panels illustrates

the vortex structure for two fundamental radial modes n = 0 with di↵erent zonal wavenumbers, as indicated at the

top of each panel. The lower panels correspond to the first radial overtone n = 1. The fundamental mode consists

of single vortex or roll in radius, and two counter-rotation rolls within a zonal wavelength. Each successive overtone

stacks another roll in depth. The shape of the rolls does not change as the zonal wavenumber increases. Instead the

spatial scale in all dimensions changes, maintaining the aspect ratio of the vortices.


